Search results for "Frölicher–Nijenhuis bracket"

showing 3 items of 3 documents

The exterior derivative as a Killing vector field

1996

Among all the homogeneous Riemannian graded metrics on the algebra of differential forms, those for which the exterior derivative is a Killing graded vector field are characterized. It is shown that all of them are odd, and are naturally associated to an underlying smooth Riemannian metric. It is also shown that all of them are Ricci-flat in the graded sense, and have a graded Laplacian operator that annihilates the whole algebra of differential forms.

Curl (mathematics)Mathematics::Commutative AlgebraVector operatorDifferential formGeneral MathematicsMathematics::Rings and AlgebrasMathematical analysisFrölicher–Nijenhuis bracketClosed and exact differential formsKilling vector fieldGeneralizations of the derivativeExterior derivativeMathematics::Differential GeometryMathematicsIsrael Journal of Mathematics
researchProduct

Graded Poisson structures on the algebra of differential forms

1995

We study the graded Poisson structures defined on Ω(M), the graded algebra of differential forms on a smooth manifoldM, such that the exterior derivative is a Poisson derivation. We show that they are the odd Poisson structures previously studied by Koszul, that arise from Poisson structures onM. Analogously, we characterize all the graded symplectic forms on ΩM) for which the exterior derivative is a Hamiltomian graded vector field. Finally, we determine the topological obstructions to the possibility of obtaining all odd symplectic forms with this property as the image by the pullback of an automorphism of Ω(M) of a graded symplectic form of degree 1 with respect to which the exterior der…

Mathematics::Commutative AlgebraGeneral MathematicsMathematics::Rings and AlgebrasMathematical analysisGraded ringGraded Lie algebraFrölicher–Nijenhuis bracketAlgebraPoisson bracketDifferential graded algebraExterior derivativeMathematics::Symplectic GeometryFirst class constraintMathematicsPoisson algebraCommentarii Mathematici Helvetici
researchProduct

Poisson-Nijenhuis structures and the Vinogradov bracket

1994

We express the compatibility conditions that a Poisson bivector and a Nijenhuis tensor must fulfil in order to be a Poisson-Nijenhuis structure by means of a graded Lie bracket. This bracket is a generalization of Schouten and Frolicher-Nijenhuis graded Lie brackets defined on multivector fields and on vector valued differential forms respectively.

Schouten–Nijenhuis bracketGraded Lie algebraAlgebraFrölicher–Nijenhuis bracketPoisson bracketAdjoint representation of a Lie algebraNonlinear Sciences::Exactly Solvable and Integrable SystemsMathematics::Quantum AlgebraPoisson manifoldLie bracket of vector fieldsLie derivativeMathematics::Differential GeometryGeometry and TopologyMathematics::Symplectic GeometryAnalysisMathematicsAnnals of Global Analysis and Geometry
researchProduct